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1 Objectives

To become familiar with and understand the basic operation of active filters and oscillators
and to understand some of the characteristics of feedback amplifiers

2 Part I: An Active Filter

2.a Locking Down Values: The Butterworth Filter

Below we have an active filter circuit which we will turn into a 2nd order Butterworth filter.
Using a UA741 op-amp, a 15V power supply, and knowing Am = 1+R2

R1
, R = R1+R2 = 10kΩ,

we can wire up this circuit.

Figure 2.1: A 2nd order low pass filter

With the proper selection of the DC gain, the circuit shown in Figure 2.1 is a 2nd order
low-pass filter. The transfer function is:

Figure 2.2: Cascode Amplifier Specifications

Recalling second order Butterworth filter polynomials are in the form s2+2ζs+1, where 2ζ
= 1.414 is the damping factor, we can use the relation Am = 1 + R2

R1
= 3 − 2ζ to solve for

the resistances:

Am = 1 + R2

R1
= 3− 1.414 = 1.586 → 0.586 = R2

R1
, R1 +R2 = 10kΩ

solve → R1 = 6.3k R2 = 3.7k

Given a 3dB frequency of 10kHz, capacitance can be calculated in a Butterworth filter
using the cutoff frequency:
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ωC = 1
RC

→ C = 1
ωC∗R = 1

2∗π∗10kHz∗10kΩ = 1.6nF

Applying the resistance and capacitor values to Figure 2.1 and taking the Bode plot:

Figure 2.3: Bode Magnitude plot (left) and Bode Phase Plot (right) of Figure 2.1

2.b Finding Instability via Oscillation

To find where the system starts oscillating we will first connect the input to ground. We will
then increase the gain AM of the system by slowly increasing R2 and decreasing R1 while
keeping the sum of the two 10kΩ. We eventually find the system oscillates after around
16ms at R2 = 6.7k , R1 = 3.3k in testing.

Figure 2.4: 2nd Order Active Filter (left) and it’s Transient Plot (right)

Zooming in on our oscillating circuit’s transient we find that it has a period of T = 111u
which is a frequency f = 9kHz
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2.c Discussion

Do these resistance values from 2.b make sense? To test we will calculate the point at
which the system should become unstable. To do this we will set ζ = 0, making the system
undamped, which will signal the start of system instability. We can see this in the root locus
plots below. The root locus of our 2nd order Butterworth filter is on the left and root locus
for our underdamped oscillating filter is on the right.

Figure 2.5: Root locus when 2ζ = 1.41 (left) and when 2ζ = 0 (right) for our active filter

Using the resistance ratio and knowing our max resistance we can find the values which
make the system oscillate.

2ζ = 2− R2

R1
= 0 → 2 = R2

R1
= 6.666kΩ

3.333kΩ
→ R1 = 3.3k R2 = 6.7k

Our resistances make sense! This also makes intuitive sense if look at the transfer function
from Figure 2.2, a resistance ratio of 2 means a gain of 3 which would cancel out the
middle term in the denominator. These values line up with out tested values so our initial
analysis was correct.

3 A Phase Shift Oscillator

The phase shift oscillator is an active circuit combination that uses regenerative feedback
to produce a sinusoidal output without any input. The initial voltage is provided by input
noise from the voltage applied to the op-amp. The ”phase shift” in phase shift oscillator is
referring to the two 180◦ degree phase shifts; one from the 3 highpass filters and one from
the op-amp output. The capacitors effectively work to cancel out the 180◦ degree phase
that comes from the op-amp, which results constructive interference of the waves. This is
compounded and goes on exponentially until maximum voltage is output from the input
rails of the op-amp. Circuit shown in Figure 3.1.
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Figure 3.1 Phase Shift Oscillator

The strange 29R resistor value in the circuit serves as a gain mechanism. It increases the
gain by 29X from op-amp input. This is important as after the feedback signal passes
through the capacitor/resistor portion it comes back attenuated to 1

29
the feedback input.

The 29R is a minimum gain requirement to begin the exponential signal growth but I will
use 30R to increase the time it takes for the transient to stabilize.

Figure 3.2: Phase Shift Oscillator with Values and Transient Response

Figure 3.3: Phase Shift Oscillator with 2x Figure 3.2 Values and Transient Response
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Figure 3.4: Phase Shift Oscillator with 0.5x Figure 3.2 Values and Transient Response

From each of the transient responses we can identify the period and find the frequency:

Circuit Measured Frequency
Default (Figure 3.2) 62.50 Hz

2x Default (Figure 3.3) 16.02 Hz
0.5x Default (Figure 3.4) 247.43 Hz

Table 3.1: Simulated Frequency of Phase Shift Oscillators

This is one way of finding a frequency that we want for our circuit: guess and test.
However, there is a more effective way, we can use the formula f = 1

2π
√
6RC

:

Circuit Calculated Frequency
Default (Figure 3.2) 65.97 Hz

2x Default (Figure 3.3) 16.24 Hz
0.5x Default (Figure 3.4) 259.90 Hz

Table 3.2: Calculated Frequency of Phase Shift Oscillators

The discrepancy between the frequency values that were simulated from CircuitMaker and
the values that were calculated using the formula are negligible and can likely be associated
with the CircuitMaker software graphing UI and human error of estimation.

4 A Feedback Circuit

Next we will explore the operation of a feedback circuit. Two important aspects of the
feedback network are how the signal is mixed (subtracted) at the input and how it is sensed
at the output. Only four basic mixing and sensing schemes are possible since both mixing
and sensing are done either in series or in shunt.
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Figure 4.1: A Basic Feedback Network

Wiring up a circuit based on the Figure 4.1 diagram, we can create something like Figure
4.2. We will use use 2N3904 transistors, and vary RB2 to find the ideal resistance for the
largest open loop gain at 1kHz. First leaving RF open.

Figure 4.2: The Feedback Circuit

Resistance Value RR2 10kΩ 20kΩ 30kΩ 40kΩ 50kΩ
Open Loop Gain @1kHz -21.73 dB 42.13 dB -21.73 dB -101.31 dB -106.22 dB

Table 4.1: Calculated Frequency of Phase Shift Oscillators

Finding our high gain resistor we can wire up our new circuit and find DC bias values
for each transistor.

Methods VC VB VE IC IB IE
Q1 1.9V 0.65V 0V 1.26mA 10.77uA 1.31mA
Q2 15V 1.9V 1.24V 2.19mA 15.39uA 2.21mA

Table 4.2: DC Operating Points
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Figure 4.3: Figure 4.3 with RB2 and Rf = ∞

Solving for Q1 values rπ, gm, hfe:

hfe =
IC
IB

= 1.26mA
10.77uA

= 117 gm = IC
VT

= 1.26mA
25mV

= 0.05S rπ = β
gm

= 117
0.05S

= 2.34k

Solving for Q2 values rπ, gm, hfe:

hfe =
IC
IB

= 2.19mA
15.39uA

= 142 gm = IC
VT

= 2.19mA
25mV

= 0.088S rπ = β
gm

= 142
0.088S

= 1.62k

For the open-loop response, we continue to keep RF = ∞ and simulate to find the Bode
response of the circuit:

Figure 4.4: Bode Response Magnitude (left) and phase (right)

Upper and lower 3dB frequencies can be found from Figure 4.3 and input/output resistance
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@ 1kHz is calculated by adding a test source to the points of resistance testing and using
RMS voltage/current.

wL3dB = 2.8Hz wH3dB = 92.6kHz AM = -42.13 dB

Ri =
VRms

IRms
= 706uV

274.3nA
= 2.58kΩ Ro =

VRms

IRms
= 706uV

11.3uA
= 62.26Ω

We will now transition and set Rf = 100kΩ. However, we will first predict and calculate the
values of this closed loop system. Using our parameter type equations for feedback topologies
we can use:

I1 = y11V1 + y12V2 → y12 =
I1
V2
|V 1=0 = − 1

Rf
= β = 10uΩ

42.13dB = 127.79V/V A′ = Vo

Is
= Rs

Vo

Vs
= 5kΩ ∗ 127.79 = −638.95kV/A

Now we have solved for our β and A′ we can evaluate our closed loop gain, input/output
resistance, and frequency response:

A = A′

1+A′β
= 638.95kV/A

1+638.95kV/A∗10uΩ = -86.47kV/A = -17.29V/V

Ri =
R′

i

1+A′β
= 2.58kΩ

1+638.95kV/A∗10uΩ = 349.14Ω

Ro =
R′

o

1+A′β
= 62.26Ω

1+638.95kV/A∗10uΩ = 8.43Ω

ωL3dB =
ω′
L3dB

1+A′β
= 2.8Hz

1+638.95kV/A∗10uΩ = 0.38Hz

ωH3dB = (ω′
H3dB)(1 + A′β) = (92.6kHz)(1 + 638.95kV/A ∗ 10uΩ) = 684kHz

Figure 4.5: Bode Response Magnitude (left) and closed feedback circuit (right)
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Methods A Ri Ro ωL3dB ωH3dB

Calculated 17.29V/V 349.14Ω 8.43Ω 0.38Hz 684kHz
Measured 17.18V/V 269.12Ω 7.12Ω 510Hz 654kHz

Table 4.3: Calculated vs Measured Closed-Loop System

We can see that our calculations are very accurate and close to our simulated results and
that using the parameter type equations for feedback topologies can be really useful. We will
now test to see the impact different values of Rf have on the same frequency range (10mHz
to 100MHz).

Figure 4.6: Bode Magnitude Response when Rf = 1kΩ (left) and Rf = 10kΩ (right)

Figure 4.7: Bode Magnitude Response when Rf = 100kΩ (left) and Rf = 1MΩ (right)
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Figure 4.8: Bode Magnitude Response when Rf = 10MΩ (left)

Now we can compare the impact of the change in Rf . Firstly, the impact on β and AM

from our previous calculations above we know that β is just inverse Rf .

Rf Resistance A (V/V) β (Measured) β (Calculated)
1kΩ 0.2 1.01E − 3 1E − 3
10kΩ 1.9 1.00E − 4 1E − 4
100kΩ 17.3 0.99E − 5 1E − 5
1MΩ 77.6 1.02E − 6 1E − 6
10MΩ 120.2 1.00E − 7 1E − 7

Table 4.4: Calculated vs Measured β and updated A values

Observing the behavior of the Bode plots, we can see that when Rf is increased the gain
goes up. Rf functionally serves as a lever to adjust the gain of this closed loop system.
Now how does this impact the input/output resistance? Let’s find out!

Rf Resistance Ro Ri

10kΩ 1.13Ω 26.48Ω
100kΩ 8.56Ω 241.20Ω
1MΩ 38.06Ω 1.31kΩ

Table 4.6: Esimtated vs Calculated Feedback

This only makes sense. With increased Rf values we get a higher output/input resistance
as it is directly influencing the input/output resistance. Now based on these values what is
the feedback? We can use the relation: 1 + Aβ = Rii

Ri
= Roo

Ro
as an estimation and using the

average of input/output resistance to find the average.
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10kΩ 100kΩ 1MΩ
Estimated Feedback 65.2Ω 7.39Ω 1.64Ω
Simulated Feedback 66.64Ω 9.89Ω 1.78Ω

Table 4.5: Input/Output Resistance with variable Rf + Feedback

Comparing both the estimated and simulated feedback from the circuit we can see that they
are both very close so we know our estimation method is quite accurate. We also see that
the higher the Rf the lower our feedback is.

The de-sensitivity factor can be calculated by:

DS = |dAf/Af

dA/A
where

dAf

dA
= 1

(1+βA)2
, Af = A

1+βA

We see that when we vary the circuit RC from 9.9kΩ to 10.1kΩ at Rf = 100kΩ we get a
gain delta (V/V) of 17.26-17.22 = 0.06. Similarly at Rf = ∞Ω we see a gain delta (V/V)
of 128.3 - 126.9 = 1.4. Using the DS formula we can make an estimation of a desensitivity
factor of 3.19 .

5 Conclusion

In this lab we have successfully explored oscillators, active amplifiers, and feedback systems.
In part 4: The Feedback Circuit, an interesting thing happened that wasn’t obvious, the

gain had a peak before 1kHz when the resistance was low. This peak could be due to some
added resonance from transistor/source inductance. Capacitance and inductance react at
given frequencies to effectively cancel each other out.
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