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Objectives:

To investigate the accuracy and usefulness of Miller’s theorem and the method of
open-circuit and short-circuit time constants and to become familiar with computer based
circuit simulation tools.

Part1

A. The Basic Transconductance Amplifier drawn out from MP1 Part I. We will evaluate this
circuit to find the locations of its poles, zeros, and find the midband gain.
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Figure 1.1 Basic Transconductance Amplifier Drawn Qut

LOCATING POLES WITH MILLER’S THEOREM
We will first find the poles/zeros of the circuit. Using Miller’s theorem and the method of
OC and SC time constants we can analyze Figure 1.1. Below we have Miller’s equations:

k
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Given we are evaluating just the capacitance, which is the inverse of impedance we can
derive the following equations from above:

Cum=Cul-K)  Cuaz=Cull-<
m=Cul( M M( K (Eq2)

Evaluating Figure 1.1 at the midband frequency, we see that our 20pF & 50pF capacitors
act as open circuits, while our higher 4uF & 1uF capacitors act as short circuits.
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Simplifying and solving for k:
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Applying Miller’s Formula’s (Eq.1) we can split our circuit into two smaller, easier to
work with circuits. Applying Miller’s Formula (Eq.2) we can find the equivalent

capacitance on either side of the two new circuits.
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From our simplified circuit we can use the method of OC and SC time constants to find

our angular (our poles) and regular frequency:
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MID BAND GAIN
To find midband gain:

Vi

Ay = Ve 2V U
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Solving given we know k:

Vo=kV,

= V_b_= -50
K= \'I!

0
= ( S )(I:)::ﬁo) ~43.619

The Basic Transconductance Amplifier from Figure 1.1 imported into CircuitMaker.
Point A represents Vo.
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Figure 1.2 Basic Transconductance Amplifier in CircuitMaker

IDENTIFYING POLES VIA SIMULATION

Running an AC simulation of Figure 1.2 from 1mHz to 1THz we can visualize the
frequency behavior of the circuit in a Bode plot. Below in Figure 1.3 and Figure 1.4 we
have the magnitude and phase response, respectively.

From ELEC 201 we know that each pole/zero contributes a +/- 20dB change in slope on
the magnitude of the Bode Plot. We can use straight line segment multiples of 20db/dec
to approx pole/zero locations. In this case we have -40dB/dec, -20dB/dec, 0dB/dec,
20dB/dec, and 40dB/dec lines on the Bode magnitude plot to estimate frequency.



For reference +/-20db/dec is illustrated in the top right corner of the graph as a legend.
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Figure 1.3 Bode Magnitude Plot: Simulation with Approximations
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Figure 1.4 Bode Phase Plot: Simulation



SIMULATION VS MILLER’S THEOREM

Using our poles we calculated in Miller’s theorem for Part A, we can create an equivalent
transfer function for our circuit so we can compare it against our simulation in
CircuitMaker.
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Importing into circuit maker:
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Figure 1.5 Bode Magnitude Plot: Simulation vs Miller’s Theorem
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Figure 1.6 Bode Phase Plot: Simulation vs Miller’s Theorem

% ERROR: ESTIMATION VS SIMULATION
We use the 3dB points as a reference to calculate the percent error between these methods

Simulation:
Using CircuitMaker and ruler tools to graphically locate. Photo of Graph in Appendix
under APPX.1 of an image of this method. Max 15 pages in report.

Millers:
-\ 1\

Winas = 2= = (Ve o) ) = (Vo) Camary) ) = 16935 107wl

2|3.900 MHZ

Wysd =4 (0,pf + Wier = 4 3% + 2SO = 345,132 vodfs
= [54.936 Hz

Millers 3-dB Simulated 3-dB % Error
o) 54.936Hz 59.400Hz 7.51%
L3dB
2.900MHz 2.199MHz 24.17%

Wh3dB



Discussion
One hypothesis that can be drawn based on our calculations with Miller’s Theorem is that
it is very accurate at low frequencies and less accurate at higher frequencies. This is
potentially due to the simplification of poles of Miller’s Theorem. when compared to
simulation based on our 3dB error of 7.51% (low freq error) & 24.17% (high freq error).

Part 11

A. A simple four pole RC filter is presented below in Figure 2.1. We will use the method of
OC and SC time constants to find the transfer function of such a filter.
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Figure 2.1 Bode Magnitude Plot: Simulation vs Miller’s Theorem

IDENTIFYING POLES VIA SIMULATION
First, simulating and extrapolating to find simulated Figure 2.1 poles.
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Figure 2.2 Bode Magnitude Plot: Pole Approx - Simulated from Figure 2.1
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Figure 2.3 Bode Phase Plot - Simulated from Figure 2.1

Increasing the value of C, to 200pF, 500pF, 1nF, 2nF, 5nF, and 10nF we rerun the AC
simulation as well as analyze the circuit using the method of OC and SC time constants
and record the effect on the high frequency poles for each C, & C, value.

IN TO FIND HIGH FREQ. POLE
We can break the circuit from Figure 2.1 down into three circuits given the capacitance.
As our range of capacitance for C, crosses through C,, we have to define our OC & SC
ranges carefully. / will use the method described in class to classify OC & SC. A

capacitor is “much larger’ when it is a factor of 10 larger

Two circuits for C, namely C,>>C, & C,~C, and one for C, namely C,>>C,.We will
evaluate both high frequency caps C,=2nF, C,= 200pF-10nF range.

Using the method of OC & SC when at high pole 1, C,

C,>>C,: 100pF, 200pF:
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Using the method of OC & SC when at high pole 2. C, is always seen as an OC here.
C,>>C,: 100pF, 200pF, 500pF, 1nF, 2nF, 10nF:
50 50

l 500%’ Ian %500 @ Cy= 100F,200pF, 500pF,
- - I = InF, 2nF, 5nF, |OnF
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Using the equations above:

Oppi Oypr

100pF 35.014 MHz 1.895 MHz




200pF 17.51 MHz 1.895 MHz

500pF 3.971 MHz 1.895 MHz

InF 1.986 MHz 1.895 MHz

2nF 992.824 kHz 1.895 MHz

5nF 397.129 kHz 1.895 MHz

10nF 198.565 kHz 1.895 MHz

wis = o = (Vi) () )
Cusde w
FINDING 3dB POINTS & ERROR
Opgs (Simulation) opas (Calculation) Error
100pF 1.778 MHz 1.89 MHz 5.93%
200pF 672 kHz 1.88 MHz 64.25%
500pF 572 kHz 1.71 MHz 66.55%
InF 432 kHz 1.37 MHz 68.48%
2nF 305 kHz 879.47 kHz 65.32%
5nF 132 kHz 388.69 kHz 66.04%
10nF 65.79 kHz 197.48 kHz 66.69%
Discussion

Our results are very interesting. We know that our “o;;345 (Calculation)” is based on a
formula that extrapolates. We see that the estimation is less correct when the poles have
frequencies where both are closer to transitioning. For example, at 100pF all other poles
are VERY small, so results are accurate, but 500nF is close enough to 100pF and 2nF of

the circuit to cause inaccuracies in the calculator.




Part 111

A. In Figure 3.1 we have a three-pole low pass filter:
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Figure 3.1 Three Pole Low Pass Filter & Transfer Function

Given the following requirements, (1) C,;>C,>C; (2) 4x 1k resistors + 2x 2k resistors, we
will derive the resistance and capacitance needed in the circuit in Figure 3.1 to satisfy the
transfer function in Figure 3.1. We are given the gain from the transfer function,
assuming non-unity gain for each node we find:

Vo Vo ,VUo Vo _ L _ 1 1\
A Vs Ve Va Ve B 27277

DERIVING RESISTANCE

Each node has a respective gain of 0.5. With this information we can deduce resistances
by solving with the transfer function at each node:
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This successfully satisfies requirement (2) -> 4x 1k resistors + 2x 2k resistors.

DERIVI APACITANCE
From the transfer function in Figure 3.1 we can also extract tau:
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T(s)=Ve® Loy _10%sec  _|ofker o Ysec
G)= Vs(s) 25 S+ 10%sec X s + 0%sec X &+ 107/sec
] { ]
- LI e I N R B
17 10%sec 0 s Io‘/sac 0] %= 107/sec 10

Given we know C,;>C,>C;and t = C-R we can assign the following 7 values

appropriately. Using the method of SC & OC time constants we can find the capacitors
from Figure 3.1.
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This successfully satisfies requirement (1) C,>C,>C;.

BODE PLOT
We now have our final resistance and capacitance values. Our final circuit imported into
CircuitMaker seen in Figure 3.2:

R1 R2 R3
1k 1k 1k
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Figure 3.2 Final Circuit in CircuitMaker

Taking the Bode magnitude and phase response:

o

=180

-450

-540
lm 10m 100m 1 10 100 1k 10k 100k 1Meg lOMeglOOMeg lg 1l0g 1l00g 1t 10t
Ref=CGround X=frequency(Hz) Y=voltage (db)

Figure 3.3 Bode Magnitude Plot of Figure 3.2
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Figure 3.4 Bode Phase Plot of Figure 3.2

CIRCUIT VS TRANSFER FUNCTION

Now I will compare this derivation of resistances and capacitances in the Figure 3.2
circuit and simulate it against the transfer function. Taking the transfer function from
Figure 3.1:

V2

Ul U2
-1/1v U4

T (s) T (s)

1kHz :>--’:>-l
MP_ P3B MP1 P3B 1075 MP1 P3B 1076 MP1 P3B 1077

Figure 3.5 Transfer function from Figure 3.1 Simulated in CircuitMaker

Now overlaying for comparison the Bode plots of Figure 3.5 and Figure 3.2:
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Figure 3.6 Bode Magnitude Plot: Calculated Circuit vs Transfer Function
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Figure 3.7 Bode Phase Plot: Calculated Circuit vs Transfer Function
Discussion

We can see that the transfer function from Figure 3.1 and our capacitance and resistance
that we chose for the circuit Figure 3.2 produce the exact same Bode response. Both the
transfer function and circuit produce the same Bode response. This effectively

demonstrates how you can produce values for a corresponding circuit based solely on a

transfer function.



APPENDIX

Part 1B: APPX.1: Finding 3dB from graph
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Ref=Ground X=frequency(Hz) Y=voltage(db) 203%
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